



# Quality control of Copernicus High Resolution Layers for monitoring agricultural landscapes and wetlands

Wendy Fjellstad<sup>1</sup>, Svein Olav Krøgli<sup>1</sup>, Linda Aune-Lundberg<sup>1</sup> Aneta Lewandowska<sup>2</sup>, Agata Hościło<sup>2</sup>, Milena Chmielewska<sup>2</sup>

<sup>1</sup> Norwegian Institute of Bioeconomy Research, Ås, Norway (NIBIO) <sup>2</sup> Institute of Geodesy and Cartography, Warsaw, Poland (IGiK)













# InCoNaDa:

# Enhancing the user uptake of Land Cover / Land Use information derived from the integration of Copernicus services and national databases

https://www.inconada.eu/

- Polish Institute of Geodesy and Cartography (IGiK) Project Promoter:
- Project Partners: Norwegian Institute of Bioeconomy Research (NIBIO) Lodz University of Technology Institute of Environmental Protection (IOŚ-PIB) Eversis





grants



Politechnika Łódzka



Funding from Norway Grants 2014-2021 via the Polish National Center for Research and Development [grant no: NOR/POLNOR/InCoNaDa/0050/2019-00]

Norway grants

Aim: to explore the potential of HRL-WAW for monitoring water and wetland features in agricultural landscapes and throughout the country in Norway and Poland.

- Peatland and wetlands are important for biodiversity
- Organic soils store large amounts of carbon
- Many drivers of change: building, infrastructure, climate change, drainage, new cultivation, afforestation...
- Existing national maps are not sufficiently accurate and updated to allow monitoring

## High Resolution Layer: Water & Wetness (WAW)



Spatial resolution 10 x 10 m

Reference year 2018 (2012-2018)

#### Input

- Sentinel-2
- Sentinel-1
- ..

#### Production

- NDWI
- Soil moisture
- •

### HRL\_WaterWetness\_2018

- 0: Dry
- 1: Permanent water
- 2: Temporary water
- 3: Permanent wet
- 4: Temporary wet
- 253: Sea water

254: unclassifiable (no satellite image available, or clouds, shadows, or snow) 255: outside area



Norway grants

For Norway, we compared with 3 national datasets:

- Agricultural monitoring program: 3Q 1000 sample squares mapped from aerial photos, stratified sample
- Area Frame Survey: AR18x18 1000 sample squares mapped in the field, systematic sample
- Topographic map (N50 water)

## Agricultural monitoring program 3Q

- Statistical sampling survey
- 1 x 1 km monitoring squares
- 1 000 squares
- 5-year interval
- Mapped from aerial photos
- Record state and monitor changes in Norwegian agricultural landscapes





## Streams and ditches

| Star Bart         | Change |
|-------------------|--------|
| Østfold/Akershus  | 1.6 %  |
| Oppland/Buskerud  | 0.2 %  |
| Vestfold/Telemark | 1.2 %  |
| Rogaland          | 2.3 %  |
| Vestlandet        | 0 %    |
| Troms             | 1.0 %  |

Photo: O. Puschmann (NIBIO)

## Compare WAW and 3Q



## Overlay to check thematic accuracy

#### WAW Classes

- Permanent water ۲
- Temporary water ۲
- Permanent wet ۲
- ۲



#### **3Q Land types**

- Freshwater
- Seawater ٠
- Wetlands ۲

#### **Point objects**

- Water habitat island •
- Wetland habitat island ۲
- Farm pond •

#### Linear objects

- Stream ۲
- Ditch ۲



# Key findings:

- Permanent water in WAW was usually correct (96 %)
   ... but water was missing: 42 % of fresh water in 3Q was not detected in WAW
- 46 % of Permanent wet was agricultural land
- 8 % of Permanent wet was wetland
  - 0.6 % of 3Q wetland was Permanent wet
  - 41 % of 3Q wetland was Dry
  - 58 % of 3Q wetland was Temporary wet
- 58 % of Temporary wet was agricultural land
  - 47 % of agricultural land was classified as Temporary wet

There was too much Temporary wet in the agricultural landscape

## Temporary wetness





Temporary wet

## Small and narrow objects are not detected

- Low detection of point objects
  - Farm ponds: 74 % Dry
  - Wetland habitat islands: 38 % Dry
  - Water habitat islands: 41 % Dry
- Low detection of linear objects
  - Streams: 70 % Dry
  - Ditches/canals: 50 % Dry



grants



# Now we move from agricultural landscapes to the rest of Norway...



## Water (whole country)

1 or 2



| Class range ( | ha)  |  |
|---------------|------|--|
| min           | max  |  |
| 0.01          | 0.1  |  |
| 0.1           | 0.2  |  |
| 0.2           | 0.4  |  |
| 0.4           | 0.6  |  |
| 0.6           | 0.8  |  |
| 0.8           | 1    |  |
| 1             | 2    |  |
| 2             | 3    |  |
| 3             | 4    |  |
| 4             | 5    |  |
| 5             | 6    |  |
| 6             | 8    |  |
| 8             | 10   |  |
| 10            | 20   |  |
| 20            | 40   |  |
| 40            | 60   |  |
| 60            | 80   |  |
| 80            | 100  |  |
| 100           | 200  |  |
| 200           | 400  |  |
| 400           | 600  |  |
| 600           | 800  |  |
| 800           | 1000 |  |
| 1000          |      |  |
|               | Sum  |  |

|                      | % of area WAW d 1     |
|----------------------|-----------------------|
| % of objects (lakes) |                       |
| containing at least  | and 2 contained in    |
| one pixel of WAW cl. | lake in a given class |
| 1 or 2               | range                 |
| %                    | %                     |
| 0.4                  | 0.3                   |
| 1.1                  | 0.                    |
| 4.0                  | 1.                    |
| 11.5                 | 4.4                   |
| 21.9                 | 8.0                   |
| 37.0                 | 15.                   |
| 69.8                 | 37.                   |
| 93.0                 | 55.                   |
| 96.8                 | 62.1                  |
| 98.0                 | 66.                   |
| 98.1                 | 68.                   |
| 99.1                 | 72.                   |
| 99.0                 | 74.8                  |
| 99.3                 | 78.9                  |
| 99.6                 | 84.                   |
| 99.9                 | 88.                   |
| 99.4                 | 89.                   |
| 99.6                 | 91.                   |
| 99.9                 | 92.                   |
| 100.0                | 94.4                  |
| 100.0                | 92.                   |
| 100.0                | 97.                   |
| 100.0                | 89.                   |
| 100.0                | 96.3                  |
|                      |                       |

0.2 0.5

1.5 4.4

8.6 15.7 37.2

55.2 62.2

66.1 68.9

72.3 74.8 78.9 84.8 88.5 89.1 91.8 92.2 94.4 92.3 97.5 89.9 96.3

We analysed waterbodies according to their size:

- Small lakes are not detected in HRL-WAW
- Lakes above 2 hectares are detected
- The area of WAW water exceeded 80 % of lake area first for lakes larger than 20 hectares

## Area Frame Survey for Norge - AR18 x 18





Kilde: Strand G.-H. 2013. The Norwegian area frame survey of land cover and outfield land resources. *Norsk Geografisk Tidsskrift* 67(1), p. 24-35.

# Key points:

- Permanent water in WAW was usually correct ... but some water was missing: 11 % was classified as Dry
- 67 % of Permanent wet was wetland
   ... but only 0.8 % of wetlands were classified as Permanent wet
- 73 % of wetlands were classified as Temporary wet ... but 26 % were classed as Dry
- There was too much Temporary wet: over half of heath, meadows and other open dry land

8.5 % of Norway is wetland, but only 0.1 % of HRL-WAW is class 3





The location of Permanent wet in Norway and the tiles of HRL-WAW

Evidence of problems with the underlying data and/or production errors



- We appreciate that definitions do not fully overlap, nevertheless...
- A third of Norway is classified as Temporary wet this is too much (to be useful)
- Only 0.1 % is classified as Permanent wet this is too little
- Ground truth = 8.5 % wetlands (+ 3.8 % peatland forest)



grants



Analysis against national datasets:

- Topographic database: BDOT10K
- Land Parcel Identification System Ecological Focus Areas (EFA)
- National wetland database: GIS Mokradła
- Land Use/Cover Area Frame Survey: LUCAS
- Database of protected peatlands



## Results: WAW vs BDOT10K



 Small lakes are not detected in HRL-WAW

ΓЫ

Norway grants The National Centre

- 50 % of lakes of 0.8-1ha are detected
- Lakes > 2 hectares are detected
- The area of WAW water exceeded 80 % of lake area first for lakes larger than 40 hectares



## HRL-WAW for wetlands detection and monitoring



- 60 % of LUCAS wetland points are classified as Dry
- 37 % as Permanent or Temporary wet in WAW
- 3 % Permanent water



## HRL-WAW for wetlands detection and monitoring



- 11 % of protected peatlands are classified as WAW Permanent wet,
   5 % as Temporaty wet
- ...but 83 % as WAW Dry



Figure 5: Location of the peat-bog nature reserves in Poland.



## HRL-WAW Conclusions for Norway and Poland

- Norway grants
- Currently, HRL-WAW is not sufficiently accurate or reliable to assist with mapping or monitoring in either Norway or Poland.
- In Norway, we already have a good monitoring system for agricultural landscapes. However, we lack detailed, regularly updated information in more remote landscapes, especially above the treeline.
- In Poland, the existing wall-to-wall national topographic database provides high quality data, but it is not updated systematically for the whole country at any given point in time.
- In both countries, HRL-WAW could play a role if the current weaknesses and errors can be resolved.
- Could service providers work more closely with national experts to validate and adapt products and thus increase usefulness and user uptake?



# Analyse the potential and accuracy of HRL-SWF for assessment of agricultural landscapes and Ecological Focus Areas

- Linear woody features
   Width ≤ 30 m, Length ≥ 30 m
   Compactness ≤ 0.785
- Small patchy woody features
   Area 200 m2 5000 m2
   Compactness ≥ 0.785
- Derived from Very High Resolution (2-4 m) satellite imagery from Copernicus Contributing Missions



### Poland - SWF vs. EFA

To receive green direct payments, the Common Agricultural Policy (CAP) requires EU farmers to dedicate 5% of arable land to areas beneficial for biodiversity: Ecological Focus Areas (EFA)

One category of landscape elements in Poland that is eligible as EFA is: "group of trees up to 0.3 ha"



grants



Land Parcel Identification System (LPIS)

In Poland, the EFA "group of trees up to 0.3 ha" covers 1 167 km<sup>2</sup>

53 % of the area is classified as SWF19 % falls in the Forest Mask28 % is neither SWF nor FM

- Next step: examine discrepancies.
- SWF may help assess the quality of the LPIS data (2018)...
- Important that future versions are available more quickly
- Preferably from eXtreme High-Resolution images (50 cm spatial resolution)



- Data users must be very careful to check quality and limitations of data
- Copernicus products have different definitions and mapping rules than national datasets
- Both Copernicus and national datasets may span multiple years of data
- Verification is difficult ...but necessary!
- There are definitely some weaknesses and errors in the Copernicus layers
- If these can be corrected, the data could be useful...
- More communication is needed between data producers and national experts to validate and adapt products and thus increase their usefulness and user uptake



# https://inconada.eu/

The research leading to these results received funding from Norway Grants 2014-2021 via the Polish National Centre for Research and Development, grant no: NOR/POLNOR/InCoNaDa/0050/2019-00.