

Monitoring forest phenology based on the CLMS Vegetation Phenology and Productivity Parameters

Kornel Szubzda
Institute of Geodesy and Cartography
Center of Applied Geomatics

Research aim

- The determination of the start and end dates of the vegetation season for specific forest types and dominant tree species.
- Analysis of the tree species seasonality for different years across various regions of Poland.
- The assessment of the effectiveness of CLMS Phenology and Productivity products for monitoring forest phenology.

Forest Bank Data (Bank Danych o Lasach)

- Forest inventory dataset that collects and manages information about forest areas in Poland.
- Data was collected for the year 2022 for every of 429 forest districs.

Location of the study site. Poland divided into 429 forest districts. Source: own elaboration

Mask of forest type and dominant tree species based on Forest Bank Data

• The following criteria were used for filtering database to create homogenous stands:

Part coverage: 80% or more of the same species

Age: 20 years or older

Area type: Forest stands and first floor trees

Shape area: 0.5 hectares or larger

Vegetation Phenology and Productivity Parameters (VPP)

- Plant Phenology Index (PPI)
- Start-of-the-season Date (SOSD) -25% of season amplitude during green-up period
- End-of-the-season Date (EOSD)
 15% of season amplitude during green-down period

Schematic representation of the HR-VPP product bundle.

Source: CLMS https://land.copernicus.eu/en/technical-library/hr-vpp-data-access-manual/@@download/file

Vegetation Phenology and Productivity Parameters (VPP)

- Mosaics of SOSD and EOSD data for the period of 2019 – 2022.
- For SOSD values representing 30 days or earlier, as well as 210 days or later in the year, were replaced with No Data values.
- For EOSD values representing 170 days or earlier, as well as 350 days or later in the year, were replaced with No Data values.

High: 22364

Low: 20246

SOSD 2019

Mosaic of SOSD data in 2019. Source: own elaboration

EOSD 2020

Mosaic of EOSD data in 2020. Source: own elaboration

Method

- Zonal statistics for every forest district were calculated.
- Majority as the statistic type.
- Centroid of the pixels had to be located within the polygons.

Start of the season date Average for the years 2019 to 2022

End of the season date Average for the years 2019 to 2022

Coniferous											
		SC	OSD		EOSD				SOSD	EOSD	
	2019	2020	2021	2022	2019	2020	2021	2022	2019 - 2022	2019 - 2022	
average	110	111	120	108	292	292	294	292	113	293	
mininum	82	74	87	52	263	273	258	257	81	273	
maximum	137	128	137	133	312	322	312	315	130	309	
standard deviation	7.15	9.21	9.37	17.18	10.11	9.24	8.21	9.80	9.08	7.10	
median	111	112	124	117	293	292	295	295	115	294	

Deciduous										
	SOSD				EOSD				SOSD	EOSD
	2019	2020	2021	2022	2019	2020	2021	2022	2019 - 2022	2019 - 2022
average	117	119	127	121	283	286	285	286	121	285
mininum	105	101	115	92	257	261	268	254	109	274
maximum	140	148	138	142	305	303	301	304	141	300
standard deviation	6.19	6.84	2.77	5.68	6.59	5.87	4.36	7.83	4.38	4.20
median	116	119	126	121	283	286	285	287	121	285

Conclusions

- The alignment of SOSD and EOSD values with temperature-based models underscores the reliability of the data and its utility in capturing regional variations in vegetation season dynamics.
- The assessment of Copernicus HR-VPP data underscores its potential for improving vegetation season monitoring, though careful examination and validation are necessary.
- The noted differences, especially the prevalence of No Data pixels in the SOSD 2022 dataset, raise questions about data accuracy and interpretation.

Thank You for listening

Publication in progress

Kornel Szubzda
Center of Applied Geomatics
Institute of Geodesy and Cartography

E-mail adress: kornel.szubzda@igik.edu.pl